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Recent progress in developing family-based association methods has extended their use to the analysis of quantitative
traits in the offspring and to the estimation, for dichotomous traits, of the relative contribution of genetic and
environmental mechanisms for parent-of-origin effects. However, many traits of interest are not naturally measured
on a binary scale yet are suspected or known to be influenced by imprinted genes, and there is consequent interest
in seeking evidence for parent-of-origin effects at these loci. Here we show how simple linear models can be used
to estimate these parent-of-origin effects for a broad class of phenotypes; in particular, normally distributed quan-
titative traits are easily dealt with.

Introduction

The use of family data, particularly child-parent trios,
for tests of association and linkage has expanded dra-
matically in recent years, and such tests have now been
developed for a wide range of response and family types
(Whittaker and Morris 2001). Here we present some
further extensions motivated by current interest in iden-
tifying and characterizing genetic variants associated
with variation in early life phenotypes, such as param-
eters of fetal and infantile growth, and in exploring the
relationship between genetic variation, early growth,
and adult disease phenotypes, such as diabetes and obe-
sity (Hattersley and Tooke 1999). Many of the genes
implicated in the regulation of early mammalian growth,
such as the insulinlike growth factors and their receptors,
are known to be imprinted, and there is consequent in-
terest in seeking evidence for parent-of-origin effects at
these loci. However, as noted by Weinberg and col-
leagues (1998, 1999), parent-of-origin effects observed
in the examination of parent-offspring triads do not nec-
essarily reflect differential genetic transmission effects.
The maternal genotype, unlike the paternal counterpart,
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has the opportunity to influence fetal development—and
potentially the risk of adult disease—through the me-
diation of altered uterine environment. Appropriate re-
parameterization of the transmission/disequilibrium test
(TDT) (Spielman and Ewens 1996) allows such genetic
and nongenetic parent-of-origin effects to be distin-
guished (Weinberg et al. 1998; Weinberg 1999), and
recent studies of the effect of variation at the insulin/
insulinlike growth factor 2 (IGF2) locus on type 2 di-
abetes (T2D) (Huxtable et al. 2000) and childhood
obesity (Le Stunff et al. 2001) suggest that both may
contribute to offspring phenotype. However, available
methods for these analyses have been restricted to dis-
crete traits wherein triads are ascertained on the basis
of an affected proband, and it has not been possible to
conduct equivalent analyses on relevant continuous
traits in the offspring, such as birth weight. The purpose
of the present article is to point out how easily standard
linear models, similar to those used in existing methods
for the analysis of quantitative traits (Allison 1997;
George et al. 1999; Abecasis et al. 2000), can be used
to allow the estimation and testing of genetic and non-
genetic parent-of-origin effects for quantitative traits.
Despite being suggested, in passing, by Allison (1997)
and, as argued above, being of key importance in many
studies, this does not at present seem to be widely ap-
preciated. However, van den Oord (2000) has suggested
the use of finite mixture models to perform such analyses
for dialleleic loci.

For clarity, we begin with the simplest possible sit-
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Table 1

Parameter Estimates, Standard Errors, t Value, and P Value for Full
Model

Parametera Estimate SE t P

Intercept .4325 .1641 2.64 .01
b0,1 �.1356 .4212 �.322 .748
b0,2 �.7653 .7289 �1.05 .296
b1,0 .0698 .2928 .238 .812
b2,0 .3105 .5323 .58 .561
t �1.0526 .5017 �2.10 .038
g1 .7195 .4258 1.69 .094
g2 .6548 .6923 .95 .346
b � b � b1,1 0,1 1,0 .1900 .5110 .372 .710
b � b � b2,1 1,0 0,2 1.3717 .8382 1.64 .105
b � b � b1,2 0,1 2,0 �.7044 1.1438 �.62 .539

a Expressions of are parental terms, represents the effects ofb gij i

child genotype, and t represents the effect of paternal transmission of
a class III allele. In each case, the subscripts indicate the number of
class III alleles transmitted.

Table 2

Comparison of Models

MODEL RSS rdf AIC

FULL

MODEL MODEL 1

F P F P

Full 103.7 107 6.77 … … … …
1 108.8 110 6.46 1.76 .159 … …
2 108.0 108 9.53 4.40 .038 .426 .654
3 106.6 109 4.49 1.48 .231 2.29 .1329

NOTE.—Model 1 assumes no effects of child genotype or pa-
ternal transmission, model 2 assumes no effects of paternal trans-
mission, and model 3 assumes no effects of child genotype.

uation; possible extensions will be sketched later. Con-
sider a dialleleic marker with alleles M and m, and sup-
pose we have a sample of child-parent trios in which a
quantitative trait has been measured on the offspring.
Let i, j, and k be the number of M alleles in the father,
mother, and child, respectively, and write m p E (y )ijk ijk

for the expected value of the child phenotype in the
appropriate marker class, with ( ). The sim-2y ∼ N m ,jijk ijk e

plest test of association is to test for a difference in
means between child marker classes, that is, to test the
significance of the terms in the model ; butg m p gk ijk k

this is, of course, vulnerable to population stratification.
To avoid this, we exploit the fact that if the marker is
not linked to a QTL (so that marker and QTL alleles
are transmitted independently from parent to child),
child phenotype is independent of child marker geno-
type, given the parental marker genotypes. Hence, we
produce a test of association and linkage by testing the
significance of the terms ingk

∗m p b � g ,ijk ij k

fitted under the constraint that (i.e., parental∗ ∗b p bij ji

symmetry) and with an appropriate constraint to ensure
the parameters are identifiable. This allows for domi-
nance and therefore gives a generalized TDT type test
(Schaid 1996). The natural analogue of the original
TDT (Spielman and Ewens 1996) omits the dominance
term, to give the additive model

∗m p b � g � g k .ijk ij 0 1

Note that, at present, these models allow only for the
effect of population structure on . More-complicatedm ijk

models are possible; for example, the error variance
could also vary across strata. It would be surprising2je

if this sort of effect were strong enough to seriously
affect our results, but the standard diagnostics should,
as always, be checked, and more-sophisticated or more-
robust models should be fitted, as required.

Either of these models may now be extended to allow
for maternal effects. The work of Weinberg (1999)
would suggest adding effects for the MM and Mm ma-
ternal genotypes, to give

∗m p b � a I � a I � g ,ijk ij 1 [jp1] 2 [jp2] k

where is the appropriate indicator variable. How-I[ ]

ever, this assumes that maternal effect is the same for
all paternal genotypes. This may not hold; for example,
population structure could lead to the maternal effect
being more pronounced in certain strata. Thus, it may
be safer to instead remove the parental symmetry con-
straint, to give

m p b � g .ijk ij k

Note that, for this model, and are completely con-b gij k

founded in families where both parents are homozy-
gous, since the values of i and j completely determine
the value of k. Such families are useful in estimating j2,
but their omission will generally have only a slight effect
on inference for gk. For notational convenience, we as-
sume the model in the remainder of them p b � gijk ij k

present article.
Finally, we can add genetic parent-of-origin effects.

Here, we shall be concerned with the effect of paternally
transmitted alleles, so let x be the number of M alleles
transmitted from father to child, giving the model

m p b � g � tx .ijk ij k

Here, gk represents the change in mean due to inheri-
tance of kM alleles, averaged over the possible parental/
sex combinations, and t is the change in mean due to
transmission of a paternal M allele. Maternal-trans-
mission effects can, of course, be added in the same
way. It is also possible to add interactions between the
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Table 3

Power for F Tests

SAMPLE SIZE

AND MODEL

POWER FOR COMPARISON WITH

Full Model Model 1

Original:
1 .44 …
2 .54 .11
3 .31 .31

Double:
1 .78 …
2 .84 .18
3 .58 .56

Triple:
1 .93 …
2 .94 .27
3 .76 .74

NOTE.—Comparisons of model 1 (no effects of
child genotype or paternal transmission), model 2 (no
effects of paternal transmission), and model 3 (no ef-
fects of child genotype) with the full model and com-
parisons of models 2 and 3 with model 1. The fitted
model in table 1 is assumed to be true; the significance
level is .05; and the sample size is equal, double, or
triple the original study size.

transmitted allele and maternal genotype, although
there may be little information in the data regarding
these interaction terms.

However, when all three individuals are heterozy-
gous, x is unknown: in the absence of other information,
we can infer only that x was 1 or 0, with equal prior
probability. There are a number of possible solutions to
this problem. First, we could do additional typing at one
or more tightly linked markers; this will often allow the
parental origin of the child alleles to be resolved. Sec-
ond, we could apply one of the standard statistical tech-
niques for dealing with missing data, for example, the
expectation maximization (EM) algorithm (Dempster et
al. 1977), which—to express it in approximate terms—
averages over the possible values of x, weighting each
appropriately. Finally, we could simply replace x by its
prior expectation of 0.5: this will often give a very good
approximation to the more sophisticated EM-based
approach.

We have described the analysis of traits with y ∼ijk

, but these models extend easily to any ex-2N(m ,j )ijk e

ponential family distribution via the usual generalized
linear model machinery (McCullagh and Nelder 1989).
However, there are situations in which we may be re-
luctant to make distributional assumptions (e.g., when
ascertainment is difficult to model, and a nonparametric
test might be preferred). Permutation-based tests are
often the method of choice in such situations but are
problematic here. For example, we might consider test-
ing for the presence of parent-of-origin or maternal ef-
fects by permuting the male/female parental labels or,

for an effect of paternally transmitted allele or child
genotype, by permuting the paternally transmitted al-
leles; however, there is no permutation that provides a
test of the parent-specific transmission effect while in-
cluding maternal effect and child-genotype terms. How-
ever, close correspondence of these permutation distri-
butions to the closed form expected under H0 gives
reassurance that our model assumptions are reasonable,
and it forms a useful supplement to the usual diagnostic
tests. Alternatively, we could use methods requiring
weaker assumptions, for instance, quasi–likelihood-
based (Heyde 1997) or robust regression (Rousseeuw
and Leroy 1987) methods.

The models described above also extend automati-
cally to multiple alleles when the appropriate terms are
added. However, the number of parameters rises very
rapidly as the number of alleles increases, so consid-
eration should be given to fitting more-parsimonious
models, for instance, by omitting between-allele–
interaction (i.e., dominance) terms. Multiple sibs can
also be accommodated; the models described above are
still appropriate, but multiple sibs cannot be treated as
independent observations, because of shared environ-
ment and polygenic contributions. There are two ob-
vious ways of dealing with intersib correlation. Gen-
eralized estimating equations may be used; alternatively,
a random family effect may be added to the above mod-
els. Burton et al. (1998) give a nice introduction to these
extensions of the standard linear model. Finally, other
covariates may, of course, be added to these models to
reflect measured environmental or genetic influences on
the trait of interest. However, care must be taken with
the addition of interactions between covariates and the
genetic variables. For example, if an interaction between
covariate and child genotype is included—but the in-
teraction between parental marker class and the covar-
iate is not—the model is no longer robust against pop-
ulation structure.

We now illustrate our approach, using previously un-
published data on the relationship between early growth
and the insulin locus. Recent studies have shown that
INS variable number of tandem repeats (VNTR)–
associated susceptibility to T2D is preferentially trans-
mitted through paternal class III alleles and is, by im-
plication, mediated through imprinted mechanisms ac-
tive in early life (Huxtable et al. 2000). Evidence for
similar imprinting effects modulating the known asso-
ciation between INS-VNTR and early growth (Dunger
et al. 1998) would provide further support for a com-
mon genetic mechanism. As part of a larger study of
genetic influences on early growth (based on the Uni-
versity College London Fetal Growth Study [Hindmarsh
et al. 2002]), we have analyzed data generated from
118 trios, ascertained via unselected consecutive births
and genotyped for the �23Hph1 variant, which acts as
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a surrogate for VNTR class, with ambiguities in the
parental origin of fetal alleles resolved through addi-
tional INS-VNTR class I typing. As our outcome var-
iable, we use body length at age 6 mo, measured as a
standard deviation score that is calculated using sex-
specific U.K. reference data. We will concentrate on il-
lustration of the methods introduced in the present ar-
ticle rather than on the underlying biology.

Fitting the model , under the as-m p b � g � txijk ij k

sumption of normally distributed errors, gives the re-
sults in table 1. The parameter estimates suggest that
maternal inheritance of a class III allele increases length
( ), whereas paternal inheritance of a class IIIg ,g 1 01 2

allele reduces length ( ). We can investigate the sta-t ! 0
tistical significance of these findings by fitting the fol-
lowing submodels:

model 1: m p b ,ijk ij

model 2: m p b � g , andijk ij k

model 3: m p b � tx .ijk ij

The residual sums of squares (RSS), residual degrees of
freedom (rdf), and Akaike’s information criteria (AIC)
(Akaike 1974) for these models are in table 2, together
with P values and F statistics for comparisons of models
1, 2, and 3 with the full model and for comparisons of
models 2 and 3 with model 1. The results are rather
inconclusive. Although adding the paternal-transmis-
sion effects to a model containing the child-genotype
terms significantly improves fit ( ), the fullP p .038
model is not a significant improve-m p b � g � txijk ij k

ment on model 1 ( ), and adding the child-P p .159
genotype terms to model 3 does not significantly im-
prove fit ( ). That is, the paternal-transmissionP p .654
effect is apparent only when the child-genotype terms
are included in the model, but these terms are not, in
themselves, significant. However, AIC favors model 3,
in which paternal-transmission, but not child-genotype,
effects are included.

The population structure and maternal effects are no-
where significant ( ), so it could be argued thatP � .3
we should remove them. If this is done, AIC favors a
model in which both paternal-transmission and child-
genotype effects are included. Again, child-genotype ef-
fects are not, in themselves, significant ( ), butP p .104
paternal-transmission effects are significant ( )P p .008
in the presence of child-genotype effects.

We have assumed normally distributed errors in these
analyses. This seems reasonable a priori, and, in each
case, the usual diagnostic plots do not suggest any sub-
stantial departure from model assumptions. Refitting
the models with the use of robust regression—
specifically, MM estimation as implemented for the sta-

tistical language R in the MASS library (Venables and
Ripley 1999)—also gives reassuringly similar results.

It seems that our best model for these data has both
child-genotype terms and paternal-transmission effects,
but substantial uncertainty remains. A further compli-
cation to interpretation is our rather low power to test
the hypotheses of interest in these preliminary data. A
full-power study for these methods is a substantial un-
dertaking, because of the large parameter space that
must be explored makes a full-power study a substantial
undertaking, which we do not attempt here. However,
we can gain considerable insight by performing a simple
simulation study based on this example. Table3 shows
power for each of the comparisons in table 2, with a
type 1 error rate of 0.05 if we assume that the parameter
estimates for the full model given in table 1 are correct
and if we base simulations on the distribution of ge-
notypes found in the current study. Sample sizes equal
to or double or triple that of the current study are con-
sidered, and, in each case, power is based on 10,000
replicates. Reassuringly, we see that, although the pre-
liminary study is rather underpowered, sample sizes to
achieve high power are well within reach for effects of
the magnitude found in the current study. Note also
that the inclusion of paternal-transmission effects has
greatly increased our power to detect effects of child
genotype: for example, when the sample size is triple
that of the original study, the power to detect effects of
child genotype is increased from 0.27 when paternal-
transmission effects are not included (so a test analo-
gous to a standard quantitative trait TDT is performed)
to 0.76 when the paternal-transmission effects are
included.

To conclude, we have shown how standard linear
models can be used to investigate parent-of-origin ef-
fects. This is relevant not just to studies of early human
phenotypes but to a wide range of traits (in humans,
animal models, and domesticated species) in which im-
portant continuous traits are thought to be determined
by complex interactions between imprinted genes and
pre- and postnatal environment.
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